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Is there an Intrinsic Limit to the Size of 2D Supracrystals Built from
Weakly Interacting Nanoparticles?

Christian Amatore*[a]

Introduction

Intense research efforts are being devoted to the synthesis
of perfect silicon-supported flat macroscopic 2D supracrys-
tals composed of nanometric metal nanoparticles. Based on
specific electromagnetic characteristics such arrays have
been predicted to offer several innovative applications in
optics, electronics, and magnetism.[1] However, central to the
expected future devices is the requirement that the nanopar-
ticles composing such arrays should have minimal electronic
interactions between themselves or with the base substrate
on which these 2D supracrystals are grown.[1] A technologi-
cal requirement for mass production of effective devices

based on this concept is that the 2D supracrystals must be
defect-free while extending over significant areas (i.e.,
�1 cm2). Even if the first requirement is certainly achieved,
the second one appears extremely difficult to reach.[2–4]

Self-organization, i.e., involving weak enthalpic interac-
tions between arrayed objects (e.g., such as van der Waals
forces),[2,3] appears to be the present method of choice for
constructing 2D supracrystals with the characteristics de-
scribed above. However, though this is one of the basic in-
teractions retained by nature to create 2D or 3D assemblies
(e.g., viruses), and despite the importance and increasing
number of synthetic works relying on this concept for pro-
ducing high quality 2D supracrystals of metal nanoparti-
cles,[2,4] it appears that the best defect-free 2D-single-crystal
arrays reported up-to-date are generally far from meeting
the minimum sizes required for any practical industrial ap-
plications. In practice, the nanoparticles arrange at most in
neat defect-less micrometric subdomains whose juxtaposi-
tion covers the base substrate,[2–4] a prohibitory situation.[1]

Present size limits cannot be ascribed to distortions intro-
duced by dispersion of the nanoparticle sizes composing the
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2D supracrystals, as this has been under appropriate control
already for several years.[5] It seems implicitly assumed by
many authors that the origin of the defects that limit the
size of 2D-single crystals is mostly related to the complexity
of the delicate interplay between growth kinetics and trans-
port of nanoparticles to the crystallization sites, as well as to
the control of nucleation rates, so that great efforts are
being devoted to controlling growth kinetics through differ-
ent strategies adapted to different contexts.[2–9]

Kinetics is certainly a key issue as is very well known for
the growth of any single crystals. This has been demonstrat-
ed and rationalized in great detail for 2D supracrystals by
Chaikin,[6] Kramer,[7] Nelson,[8] and Ertl[9] in a series of semi-
nal works. However, we wish here to examine the problem
from a different angle. Namely, even if such kinetic prob-
lems could be brought under perfect control by adequate
synthetic strategies, would that be sufficient to solve the
problem of manufacturing large size 2D supracrystals of
weakly interacting nanoparticles?
In evaluating the potential stability of 2D crystals only

strict enthalpic contributions (H) are generally consid-
ered.[3,10] However, if the magnitude of the enthalpy of a su-
pracrystal grows as the number, N0, of arrayed particles, the
entropic demand (S) grows faster than the number of ar-
rayed particles reflecting the increasing demand for order
when more and more nanoparticles are assembled.
Whenever the absolute value of the enthalpy per nanopar-

ticle (in the Madelung sense, i.e. , including all interactions:
between the particles themselves, with the underlying sub-
strate and accounting for any change incurred by the base
substrate, owing to the presence of the nanoparticle cover-
age; however this does not include the enthalpy of forma-
tion of the nanoparticles from their atomic components) is
much larger than the thermal quantum, kBT, as occurs for
example in classical inorganic crystals (e.g., NaCl, quartz, di-
amond, etc.) the overall negative enthalpy of the arrayed
particles compensates easily for the large order demand cre-
ated when the crystal size becomes excessively large. How-
ever, this may not be the case if the enthalpy per nanoparti-
cle needs to be small as is required for the applications de-
scribed above.
Under such delicate conditions (i.e. , when the enthalpic

drive is poor), the system must find ways to relax its too de-
manding order to achieve any thermodynamic stability. This
necessarily corresponds to the spontaneous creation of sev-
eral types of defects and dislocations. Such states are gener-
ally associated with weaker enthalpies than those of the per-
fectly arrayed elements in the crystalline network, but they
may help to lower the overall Gibbs free energies (i.e. , free
enthalpies) because the corresponding amount of disorder
introduced in the crystal corresponds to positive entropic
contributions relative to a perfect array. This view seems to
justify qualitatively the segregation of would-be macroscopi-
cally perfect 2D supracrystals into a series of juxtaposed mi-
crometric perfectly ordered subdomains.[2–4]

In the following, we wish to examine if a would-be perfect
single-domain 2D supracrystal (that we take everywhere as

the reference state even if it may not actually exist experi-
mentally) may experience a thermodynamic drive for rear-
ranging into subdomains so as to decrease its primitive too-
high order and minimize locally its overall Gibbs energy (in
this work we use the term “Gibbs free energy” to represent
the “standard free enthalpy”, i.e., the thermodynamic state
function G0=H0�TS0 in which T is the absolute tempera-
ture, H0 the standard enthalpy, and S0 the standard entropy).
For this reason we do not need to specify the initial state

in which the nanoparticles are before they assemble onto
the substrate. Because our thermodynamic reference state is
a perfectly arrayed 2D supracystal, the property that we
wish to establish here is independent of the initial status of
the nanoparticles before they assemble into the array. It
only determines the most favorable ordered structure of the
assembly, if any one may be formed. By all means, the pres-
ent analysis does not imply that such most stable state has
any intrinsic thermodynamic stability, since this depends on
external factors defining the system before it assembles.
From a strict point of view the very chemical nature of

defects matters. However, spontaneous formation of disloca-
tions defining perfectly organized subdomains whose juxta-
position fully covers the underlying substrate is often report-
ed for actual 2D supracrystals of the type envisioned
here.[1–4] Keeping in view that the ultimate synthetic goal is
the possibility of manufacturing defectless 2D supracrystals
with feebly interacting objects, we propose to consider only
this single type of defect. In doing so we certainly particular-
ize a single mode of relaxing the too large entropic demand.
On the other hand, this choice is representative of many ex-
perimental situations[1–4] and is particularly helpful in evalu-
ating the compromise between enthalpic and entropic con-
tributions. In a real case the thermodynamic constraint that
we ascribe to a single specific type of defect may be
“shared” by the presence of other defects, e.g., such as those
identified and thoroughly investigated by Chaikin,[6]

Kramer,[7] and Nelson[8] or other specific ones, e.g., as hexat-
ic defects,[10,11] or any others. Yet, by essence, such defects
will distribute over the whole assembly and prevent anyway
the use of the ensuing 2D supracrystals for the presently tar-
geted innovative applications in optics, electronics and mag-
netism.[1] Hence, our analysis is aimed to provide a minimal
thermodynamic requirement for 2D supracrystals prone to
such type of applications. For the same reason we consider
only statistical Boltzmannian entropic contributions[13a] and
we do not specify the exact chemical nature of the interac-
tions of nanoparticles with its neighbors or with the base
surface, nor the exact changes in surface and edge tension
energies experienced by the base substrate.
For the sake of pedagogical presentation we chose to

present in the main text a thorough analysis considering spe-
cifically squared crystallographic arrangements (c) since this
simplifies the formulations while keeping intact its principle
(note that in all this work, we use the classical notations for
3D lattices, c, cc, or hex, though we investigate 2D lattices).
In selecting a squared lattice to illustrate the present scaling
law analysis, we fully appreciate that generally the experi-
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mental supracrystals arrange into centered squared (cc) or
hexagonal (hex) arrays,[2,4] owing to the maximization of
density and interactions. For this reason we report also the
final outcomes of our approach for cc and hex 2D supracrys-
tals in the main text, but fully disclose their analyses in the
Appendix. Regardless, the problem that we examine here-
after does not significantly depend on the precise crystallo-
graphic lattice type, but rather on essential scale factors that
are related only to the number of particles arranged in 2D
supracrystals as soon as this number is large enough for any
realistic application such as those envisioned here.[1]

Theory

Defining a general scaling law for 2D-supracystals : Let us
consider a perfectly flat 2D wafer of surface area A0 covered
by a perfectly ordered 2D array consisting of N0 nanoparti-
cles of individual radius rp. This is taken as the thermody-
namic reference state without presuming that such an array
may actually be formed even transiently. Let us assume that
such perfect array may evolve so that, although still covering
the same surface of the wafer with the same number of par-
ticles,[14] it gives rise to a series of extremely thin dislocations
that separate the initial continuous 2D crystal in a juxta-
posed series of ND perfectly ordered 2D subdomains consist-
ing each of 2D supracrystals (see Figure 1). Such composite

supracrystals have indeed been frequently reported experi-
mentally when enthalpies of interactions in the array are
weak.[1–4] In this view, the single 2D supracrystal used as our
reference state is represented by ND=1 to represent that a
single perfect domain is achieved. Our first aim here is to
evaluate the Gibbs energy variation, DGN0

ND
=GN0

ND
�GN0

ND¼1,
experienced if a single domain splits into ND subdomains.
This will serve to examine afterwards if a particular value of
ND confers a local stability on a particular component of
this family, if DGN0

ND
experiences a single minimum when ND

varies between unity and its limit for a fully random array
(i.e., ND!N0).
The present model is not aimed to solve any specific situa-

tion (as performed in previous seminal works),[6–9] but to

propose a general scaling law that may result useful to syn-
thetic chemists for designing new strategies for manufactur-
ing large 2D supracrystals consisting of weakly bound nano-
particles. Its root consists in remarking that the main en-
thalpic drive in creating a perfect 2D supracystal is approxi-
mately proportional to the cumulative surface area of the
ordered domains, taking into account core and edge interac-
tions, although the entropic contribution consists of two
terms. One is negative and features the high “order
demand”, owing to the population of perfectly arrayed par-
ticles. The second one is positive and represents the “disor-
der allowance” within the composite supracrystal ; this in-
cludes the defects (misplaced particles, defects, absence of
particles). We assume that for the minimization of energy
these defects assemble into chain boundaries defining the
subdomains.[6a] In this regard, we exclude the possibility that
these boundaries may result fractal to any significant
degree, even if they are possibly crossing (see Figure 1) to
delimit ordered subdomains. It is essential to our analysis
that the boundaries keep a dimensionality equal or closely
equivalent to that of a length.
If a general scaling law exists to define the most thermo-

dynamically stable arrangement, the number ND of subdo-
mains for a given number N0 of nanoparticles, it is intuitive-
ly expected to depend on the specific lattice (e.g., c, cc, hex)
assumed by the nanoparticles. However, from the general
theoretical point of view developed here, the precise nature
of the crystallographic array influences the following theo-
retical description only through the introduction of specific
geometrical factors whose values are commensurable to
unity (see below and Appendix). For this reason we will
pursue our analysis by considering squared supra-crystallo-
graphic arrangements (c) of nanoparticles (Figure 1c), as
this is the 2D-crystallographic arrangement that leads to the
simplest intermediate formulations while keeping intact the
general principle and outcome of the present model (see
below). The Appendix presents the same analyses for
squared centered (cc) and hexagonal arrays (hex), hence
validating quantitatively this choice for simplification of our
presentation.
Finally, we wish to recall that when ND@1 it is probable

that a distribution of clusters sizes (presenting a distribution
of their surface areas AD) should be observed. However, as
will become evident in the following we are interested in
the situation when ND=1, as this is the one which matters
for any practical application.[1] Therefore, for keeping a gen-
eral character to our analysis while simplifying its presenta-
tion we will consider that all subdomains are identical (that
the distribution of AD is close to a Dirac delta function). In
doing so we certainly minimize the entropic contributions
related to disorder by minimizing ex abrupto one configura-
tional component.[12] Yet, as the final outcome of our ap-
proach is to produce a scaling law that describes the condi-
tion required for obtaining ND=1, this assumption is not
critical for the final outcome of our theoretical model.
Let then the common lateral dimension of each single

defect-free 2D-supracrystal square domain be aD (Fig-

Figure 1. Schematic representation of a wafer covered by independent
domains consisting of 2D supracrystals (this is illustrated for squared (c)
arrangements). a) View of a squared-wafer covered with a squared ar-
rangement of ND identical perfect 2D supracrystalline juxtaposed subdo-
mains. b) Schematic illustration of the arrangement of distinct single crys-
tals. c) Schematic view defining the different classes of nanoparticles in
any subdomain.
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ure 1c), and that of the composite 2D supracrystal be a0
(Figure 1a). To proceed let us introduce first the following
parameters that transcribe the above geometrical descrip-
tions into dimensionless values. Equation (1) is the overall
number of particles assembled onto the 2D wafer:[15]

N0 ¼
A0

4 r2p
¼
�
a0
2 rp

�2
ð1Þ

Equation (2) is the number of identical perfect 2D domains:

ND ¼
A0

AD
¼
�
a0
aD

�2
ð2Þ

Equation (3) is the number of particles in each subdomain:

Np ¼
�
aD
2 rp

�2
ð3Þ

Each 2D subdomain (Figure 1c) includes Ncore
p “core” nano-

particles, i.e., located within the subdomain core, Nedge
p

“edge” particles, lined along the domain edge and experi-
encing a relative destabilization, owing to edge effects, and
Napex
p “apex” particles located at each corner of the 2D clus-

ter. Then, Np=Ncore
p +Nedge

p +Napex
p . Upon considering that

edge perturbations are attenuated after a single row of
nanoparticles (note that, if required, any appropriate factor
may be introduced to account for an edge perturbation af-
fecting other rows), one has Napex

p =4 for the c arrange-
ment,[15] hence Np=Ncore

p +Nedge
p +4 (Figure 1c) in which

[Eq. (4)]:

Nedge
p ¼ 4

�
aD�4 rp
2 rp

�
¼ 4
�
aD
2 rp
�2
�

ð4Þ

It is of interest to remark that from Equations (1 and 2),
Equation (5):

Nedge
p ¼ 4

�
aD
2 rp
�2
�
¼ 4
�
aD
a0

a0
2 rp
�2
�
¼ 4

� ffiffiffiffiffiffiffi
N0

ND

r
�2
�

¼ 4 ðq�2Þ
ð5Þ

in which q is defined as a dimensionless parameter charac-
terizing the crystalline quality of the overall arrangement
over the whole wafer for a given number N0 of nanoparticles
[Eq. (6)]:

q ¼
ffiffiffiffiffiffiffi
N0

ND

r
ð6Þ

q=
ffiffiffiffiffiffi
N0

p
(i.e., ND=1) represents the perfectly ordered 2D

supracrystal that we use as our reference state. Conversely,
q!1 represents the trend towards a full randomization of
the nanoparticles (i.e., ND!N0).

[16] It ensues that with this
definition [Eq. (7)]:

Np ¼
�
aD
2 rp

�2
¼
��

aD
a0

��
a0
2rp

��2
¼ N0

ND
¼ q2 ð7Þ

so that ACHTUNGTRENNUNG[Eq. (8)]:

Ncore
p ¼ Np�ðNedge

p þ4Þ ¼
N0

ND
�4

ffiffiffiffiffiffiffi
N0

ND

r
þ4 ¼ ðq�2Þ2 ð8Þ

Based on the above considerations, the overall enthalpic
change, DHN0

ND
, experienced by the system during its transi-

tion from the reference state (i.e., ND=1) to any situation
in which ND>1 is given by the following summation which
encompasses all the changes experienced by each particle
type of each of the ND subdomains [Eq. (9)]:

DHN0
ND
¼ ðHN0

ND
�HN0

ND¼1
Þ

¼ NDðNcore
p Hcore

0 þNedge
p Hedge

0 þ4Hapex
0 Þ�N0h0

ð9Þ

in which h0 is the enthalpy per nanoparticle in the reference
state (note that h0 is given by the same expression as the
first term of the right-hand side of Equation (9) when im-
posing ND=1 and q=

ffiffiffiffiffiffi
N0

p
). In Equation (9), Hj

0 terms rep-
resent all the enthalpic contributions experienced by each
lattice point of type ’j’ of the array (see Figure 1c).[10] This is
defined in the MadelungNs sense and accounts for the en-
thalpic interactions between neighboring particles and with
the base substrate, of chemical nature or featuring tension
energies incurred by the array or its base substrate surface,
including surface tension in/under the subdomain cores or
line tensions in/under the boundaries between subdomains.
Hence, provided that we focus on ND values that are not ex-
cessively large and ND ones which are excessively large, H

j
0

values may be considered independent of ND or N0.
From Equations (5, 7 and 8) it follows that the average

enthalpy per particle is [Eq. (10)]:

DHN0
ND

N0
¼ Hcore

0

ðq�2Þ2þ4ðq�2ÞHedge
0 =Hcore

0 þ4 Hapex
0 =Hcore

0

q2
�h0

ð10Þ

For simplifying the notations, it is of interest to remark that
the “core” enthalpies Hcore

0 are necessarily negative if the
overall arrangement presents any stability, whereas Hedge

0

values are presumably less negative (or even positive) be-
cause of the presence of disfavoring interactions prevailing
at the edges between perfect 2D clusters. This is certainly
even more true for Hapex

0 . To account for this observation, let
us rewrite Hedge

0 and Hapex
0 as Hedge

0 = Hcore
0 ACHTUNGTRENNUNG(1�e) and Hapex

0 =

Hcore
0 ACHTUNGTRENNUNG(1�eg) in which e is most presumably a positive term

and g
1 (though the notation and the following analysis
remain valid even when this is not the case). Then
[Eq. (11)]:

DHN0
ND

N0
¼ Hcore

0

�
1�4e

ðq�2Þþg

q2

�
�h0 ð11Þ
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To assess the relative stability of the overall arrangement vs.
the reference state one needs to consider the whole Gibbs
energy variation, DGN0

ND
, experienced by the array during the

transition from ND=1 to ND>1. This includes the entropy
variation, DSN0

ND
, and not only the enthalpic one. DSN0

ND
is eval-

uated hereafter upon considering the Boltzmann statistical
entropy,[13a] upon considering iso-energetic permutations,
i.e., within each type of position: cores, NDN

core
p , edges,

NDN
edge
p , and apexes, 4ND. Posing NDDSN0

ND
=N0ACHTUNGTRENNUNG(kBS0) in

which kB is the Boltzmann constant and S0 is a characteristic
of the perfect array (hence independent of ND or of q for a
given number, N0, of nanoparticles), one obtains
[Eq. (12)]:[13]

DSN0
ND

kB
¼ ln ðN0Þ!

ðNDN
core
p Þ!ðNDN

edge
p Þ!ð4NDÞ!

�N0s0 ð12Þ

Finally, since we consider here large numbers of particles of
each subtype, we may use the classical approximation
ln(X!)�X lnX in the expression of DSN0

ND
so that [Eq. (13)]:

DSN0
ND

kBN0
¼ 2

�
lnq�ðq�2Þlnðq�2Þ

q
�2 ðq�1Þln4

q2

�
�s0 ð13Þ

Combining Equations (11 and 13) affords Equation (14):

DGN0
ND

N0
¼Hcore

0

�
1�4e

ðq�2Þþg

q2

�

�2 kBT
�
lnq�ðq�2Þlnðq�2Þ

q
�2 ðq�1Þln 4

q2

�

�½h0�TðkBs0Þ�

ð14Þ

The term g0=h0�T ACHTUNGTRENNUNG(kBs0) in the last bracket of Equa-
tion (14) is the standard Gibbs free energy per nanoparticle
in the reference state so that it is independent of q for a
fixed value of N0. This equation thus establishes that when
ND varies while N0 is constant (as we consider here), DGN0

ND
/

N0 is a function of q being modulated by three parameters,
Hcore

0 , e, g, which have also constant values. Within this
framework, the thermodynamically most stable array is then
that corresponding to the value, qmin, of q which minimizes
DGN0

ND
/N0 when q (i.e. , ND) varies over its possible range.

[16]

As @2DGN0
ND
/@q2>0 over the whole range of possible q

values, if any exists, the extremum presented by DGN0
ND

at
qmin characterizes the Gibbs energy minimum relative to our
reference state (defined by qref=

ffiffiffiffiffiffi
N0

p
). Thus, qmin is the

single solution of @(DGN0
ND
/N0)@q=0, of Equation (15):

f½qþ2ðg�2Þ� eH
core
0

kBT
þq lnðq�2Þ�ðq�2Þln4gq¼qmin ¼ 0 ð15Þ

qmin characterizes the most stable thermodynamic state of
the system of N0 arrayed nanoparticles vs. the perfect array
taken as the reference state in this work. Hence, though it
characterizes the single local Gibbs energy minimum, it

does not at all characterize the propensity of the individual
nanoparticles to arrange into this best 2D array, as this de-
pends also on the exact starting conditions characterizing
the nanoparticles (or their atomic components) and the sub-
strate before the 2D-supracrystal assembly is made. Howev-
er, numerous experimental systems have been reported pre-
viously to establish that is indeed feasible.[1,2,4–11]

Equation (15) may be solved numerically to afford the
variations of qmin as a function of eHcore

0 /kBT for any g value
(see Figure 2). Owing to its definition, g is a parameter com-
mensurable to unity, so Figure 2 shows that its influence is

very modest and restricted to a range of jeH0
core/kBT j

values which are close to unity, i.e. , within a range in which
qmin would be too small to account for any realistic applica-
tion of the kind envisioned here.[1]

To proceed we may then restrict our analysis to the situa-
tions of practical interest,[1] when q is extremely large and
N0@1 as is desired for any realistic applications. Thus, for
any case of practical interest here Equation (15) simplifies
into Equation (16):

eHcore
0

kBT
þ ln q

min

4
¼ 0 ð16Þ

to which the solution is Equation (17):

qmin ¼ 4 exp
�
� eHcore

0

kBT

�
¼ 4 exp

�
�H

core
0 �Hedge

0

kBT

�
ð17Þ

This asymptotic analytical solution is superimposed in
Figure 2. This establishes the validity of Equation (17) as
soon as jeHcore

0 /kBT j exceeds a few units, i.e., whenever qmin
reaches any value of practical interest.
It ensues that the most stable c arrangement of N0 parti-

cles onto the wafer corresponds to the juxtaposition of
ND

stable perfect 2D supracrystals such as Equation (18):

Figure 2. Numerical solution of Equation (15) as a function of eHcore
0 /kBT

and g for a squared (c) configuration (solid curves; from bottom to top:
g=1,2,3,4 and 5). The dashed curve is the asymptotic solution given in
Equation (17).
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ND
stable ¼ N0

16
exp
�
2
Hcore
0 �Hedge

0

kBT

�
ð18Þ

To obtain a single 2D supracrystal including all the N0 nano-
particles, the above value of Nstable

D must be at most equal to
unity, i.e. Equation (19):

DHc
0 ¼ Hcore

0 �Hedge
0 � DHc

max ¼ �
kBT
2
ln
N0

16
ð19Þ

The condition in Equation (19) shows that the constraint,
Hc

0�DHc
max, imposed on DHc

0= (H
core
0 �Hedge

0 ) for a c lattice
results more and more severe when N0 increases, when the
array size increases. Almost identical limits are obtained for
arrays involving higher density packings such as squared
centered (cc) or hexagonal (hex) ones (see Appendix) Equa-
tion (20):

DHcc
max ¼ �

kBT
2
ln
N0

8
ð20Þ

and Equation (21):

DHhex
max ¼ �

kBT
2
ln
N0

12
ð21Þ

Note that Equations (20 and 21) differ from Equation (19)
only by the denominators associated to N0 in the logarithmic
terms of their right-hand sides. As for any macroscopic 2D
supracystal these factors are considerably much smaller than
N0, their moderate changes are negligible in the logarithmic
values (compare Table 1). In fact the three equations are
equivalent to Equation (22):

ln
ffiffiffiffiffiffi
N0

p
� �DHc, cc, or hex

0

kBT
ð22Þ

Interestingly, this scale law features that irrespective of the
lattice type N0 must be small enough for the positive entrop-
ic contribution introduced by the

ffiffiffiffiffiffi
N0

p
particles located onto

the edges of the perfect single 2D supracrystal to compen-
sate the weak enthalpies and the large negative entropy im-
posed by the N0 nanoparticles perfectly arranged within its
core. In other terms, the surface area of the supracrystal

(/N0) must remain small enough for its edges overall length
(/

ffiffiffiffiffiffi
N0

p
) to compensate its internal entropic demand.

To illustrate quantitatively the constraints in Equa-
tions (19–21), and validate the simplification in Equa-
tion (22), Table 1 reports the corresponding threshold values
of DHmax

c,cc, or hex for typical sizes of 2D-single crystals com-
posed by nanoparticles of radius of rp�1 nm arranged in
each of the three array types. The extremely weak depend-
ence on the type of lattice, even for the smallest supracrys-
tals, validates our point in proposing the general scaling law
in Equation (22).
We may particularize further the application of the above

scaling law by remarking that upon placing a nanoparticle
onto an edge position rather than within the core one
cannot impose a too unfavorable enthalpic change since the
interactions prevailing in the bulk are already weak. Recog-
nizing that “edge nanoparticles” necessarily experience a
loss of stability, owing at least to the absence of half of their
neighbors (see, e.g., Figure 1c), one may plausibly assume
that e values fall around 1=2. On the other hand, for most
cases reported in the literature up to now,[2,4] average enthal-
py per site reaches a few �kBT at most (i.e., a few times
�2.5 kJmol�1 or a few mJm�2 at most when expressed in
macroscopic units at 300 K).[3] This is required for avoiding
the involvement of any strong interactions between particles
or with the base substrate which would prevent the sought
optical, electronic or magnetic properties.[1] From Table 1 it
is then predicted that the maximum expectable size of such
arrays lies around a few square micrometers. This predicted
range compares extremely well with the largest sizes of de-
fectless areas in 2D supracrystals reported up to date even
when crystal growth kinetics seem fully mastered.[2,4]

Conclusion

Though kinetics defects are certainly an important factor
that may ultimately limit the size of 2D supracrystals
formed by weakly interacting metallic nanoparticles[1–4] it
has been shown in this work that a drastic thermodynamic
constraint already limits the size of such arrays. Hence, even
perfect control of growth kinetics and fast kinetics of defect
rearrangements[6–9] cannot solve the problem borne by or-
dering weakly interacting nanoparticles into large 2D supra-

crystals except maybe under
metastable circumstances.
Indeed, a stringent threshold is
ultimately imposed by the in-
trinsic thermodynamics of the
system at hand.
This severe condition is ulti-

mately forced onto the system
to compensate for the extreme-
ly high entropic constraint im-
posed by a perfect ordering of
the 2D-supracrystal elements.
Such unfavorable entropic

Table 1. Thermodynamical constraints on DHc, cc, or hex
0 = (Hcore

0 -Hedge
0 ) for a few selected sizes of 2D-single

ACHTUNGTRENNUNGsupracrystals (squared (c), centered square (cc), or hexagonal (hex) lattices) composed of 1 nm radius nanopar-
ticles as a function of the 2D-supracrystal size, as predicted by Equations (19–21).

DHc, cc, or hex
max

2D-Single crystal size
(a0)

Number of
nanoparticles (N0)

Microscopic units
[kBT]

Macroscopic units[a]

[kJmol�1]
c cc hex c cc hex

1 cm 2.5Q1013 �14.0 �14.4 �14.2 �35 �36 �35
1 mm 2.5Q1011 �11.7 �12.1 �11.9 �29 �30 �30
1 mm 2.5Q105 �4.8 �5.2 �5.0 �12 �13 �12

[a] i.e., in RT units (2.5 kJmol�1 at 300 K); note that for rp�1 nm, RT � 1 mJm�2 at 300 K (compare with
ref. [3]).
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demand may be easily compensated in crystals involving
large negative enthalpies, but results especially difficult to
balance by weak enthalpies of interaction between the nano-
particles. Hence, it may be relaxed only by the introduction
of enough disorder in the array, by considering sufficiently
small crystals so that their edge length (/

ffiffiffiffiffiffi
N0

p
) is compara-

tively large enough vs. its surface area (/
ffiffiffiffiffiffi
N0

p
).

We have evaluated the thermodynamics of the system for
a coverage of 2D supracrystals composed of nanoparticles
arranged in three typical lattices (c, cc, and hex). The very
similar results obtained for c, cc, or hex arrangements estab-
lish that the exact crystallographic structure has minimal in-
fluence whenever N0 is extremely large as expected for real-
istic devices.[1] Therefore the principle of the present ap-
proach and, most importantly, its general outcome in the
form of the scaling law in Equation (22) appear to be readily
transposable to almost any other realistic crystalline 2D con-
figuration whenever the defects may aggregate to form one-
dimensional domains limiting perfect 2D domains.
This clearly evidences that perfect kinetic control is not

sufficient for allowing large 2D supracrystals of weakly in-
teracting objects to be grown.[1] Thus, new synthetic strat-
egies must be developed to achieve supracrystals ordering
over surface areas which may lead to industrial applica-
tions.[17]

It is also of interest to consider that the same concept
may certainly be transposed to 3D networks. Indeed, in such
a case the number of ordered objects, N0, to be arranged
grows as the cube of the crystal size (vs. growing as its
square for a 2D network) while those on its surface grow as
its square (as /N0

2/3 instead of /N0
1/2 for a 2D network).

This may impose different, but still stringent conditions onto
the size of single 3D crystals which may be obtained from
weakly interacting objects (large organic molecules, proteins,
etc.), as is frequently observed when single crystals are
grown for X-ray structural analyses. Therefore the present
approach may serve as a qualitative basis for explaining the
great difficulties experienced in obtaining even micrometric
single crystals from these objects.
To conclude, we wish to recall that the scaling law concept

developed here is somewhat akin to that introduced by P. G.
de Gennes in his “blob theory” to predict the statistical con-
formation of long polymers and polyelectrolytes in solu-
tion.[18] Though the exact rationales and physicochemical
areas are different, the concepts underlying the two models
and their outcomes in terms of thermodynamically favored
structures have similar roots. Indeed, both find ultimately
their origin in the fact that in ordered systems entropic de-
mands grow faster than enthalpic ones when the number of
arrayed elements increases. Therefore, the trend to fragment
into subdomains is to be considered as a natural outcome
which becomes especially visible for systems involving weak
interaction enthalpies as it is the case for 2D arrays of
weakly interacting nanoparticles, 3D crystals of organic and
biological molecules, as well as long chains of polymers or
polyelectrolytes.

Appendix

Thermodynamical threshold for 2D supracrystals with higher density
packings : For the sake of simplicity in the intermediate derivations, in
the main text we purposely considered 2D-squared arrays, as for these
lattices the accounting of edge, apex, and core particles is the simplest,
although bearing intact the essential factors and attributes that control
the validity of our scaling law. Yet as expressed in the Introduction,
higher-density packings such as hexagonal or squared-centered arrays are
generally spontaneously preferred in real 2D-supra lattices of nano-
ACHTUNGTRENNUNGparticles.

It is the purpose of this Appendix to disclose the results for these higher
density 2D packings and to justify our statement about the generality of
the laws disclosed above provided that geometrical factors commensura-
ble to unity are taken into account according to the specificity of the 2D
packing. We use hereafter the same notations as in the main text.

For the centered square (cc) packing, the values of N0, ND, Np and N
apex
p

given in Equations (1–3) for a c lattice remain identical. The difference
between simple squared and centered squared arrays reveals only in
Napex
p , owing to the change in compactness. Thus, upon the introduction

of the crystalline quality parameter q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0=ND

p
[Eq. (6)], one obtains

now [Eq. (23)]:

ðNedge
p Þcc ¼ 4

�
aD

2
ffiffiffi
2
p
rp
�2
�
¼ 4
�
qffiffiffi
2
p �2

�
ð23Þ

and, noting that [Eq. (24)]

ðNpÞcc ¼ q2 ð24Þ

one obtains [Eq. (25)]:

ðNcore
p Þcc ¼ ðNpÞcc�½ðNedge

p Þcc þ 4� ¼ q2�2
ffiffiffi
2
p
qþ 4 ¼ ðq�

ffiffiffi
2
p
Þ2 þ 2 ð25Þ

instead of Equations (5,7, and 8). Based on these definitions, one finally
obtains the counterparts of Equations (11 and 13) for a squared centered
2D supracrystal [Eq. (26)]:

�
DHN0

ND

N0

�cc

¼ Hcore
0

�
1�2e

ffiffiffi
2
p
qþ 2ðg�2Þ
q2

�
�h0 ð26Þ

and [Eq. (27)]:

�
DSN0

ND

kBN0

�cc

¼2 lnq�ðq�
ffiffiffi
2
p
Þ2 þ 2

q2
ln½ðq�

ffiffiffi
2
p
Þ2 þ 2�

� 2
ffiffiffi
2
p
q�8
q2

ln½2
ffiffiffi
2
p
q�8�� 4

q2
ln4�s0

ð27Þ

For a hexagonal array, considering now that a0 is the side length of a
macroscopic hexagonal substrate (instead of a squared one as in Fig-
ure 1a), one obtains [Eq. (28)]:

ðN0Þhex ¼ 3
�
a0
2 rp

�2
�3 a0

2 rp
þ 1

a0�rp



!3

�
a0
2 rp

�2
ð28Þ

in which the limit in the right-hand-side is achieved when a0 is considera-
bly large compared to the nanoparticles sizes. Similarly, one has
[Eq. (29)]:

ðNDÞhex ¼
A0

AD
¼

3
ffiffi
3
p

2 a0
2

3
ffiffi
3
p

2 aD2
¼
�
a0
aD

�2
ð29Þ

and [Eq. (30)]:
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ðNpÞhex ¼ 3
�
aD
2 rp

�2
�3 aD
2 rp
þ 1

a0�rp



!3

�
aD
2 rp

�2
ð30Þ

so that upon remarking that Np
apex=6 for hexagonal packing, so that

Np=Np
core+Np

edge+6, the counterpart of Equation (5) is [Eq. (31)]:

ðNedge
p Þhex ¼ 6

�
aD
2 rp
�2
�

ð31Þ

Introducing the crystalline quality parameter q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0=ND

p
[Eq. (6)], and

noting that [Eq. (32)]:

ðNpÞhex ¼ q2 ð32Þ

finally allows to express the counterparts of Equations (5 and 8) for a
2D-hexagonal packing [Eq. (33)]:

ðNedge
p Þhex ¼ 6

�
aD
2 rp
�2
�
¼ 6
�
aD
a0

a0
2 rp
�2
�
¼ 6
�
1ffiffiffi
3
p

ffiffiffiffiffiffiffi
N0

ND

r
�2
�

¼ 6
�
1ffiffiffi
3
p q�2

� ð33Þ

and [Eq. (34)]:

ðNcore
p Þhex ¼ ðNpÞhex�½ðNedge

p Þhex þ 6� ¼ q2�2
ffiffiffi
3
p
qþ 6 ¼ ðq�

ffiffiffi
3
p
Þ2 þ 3 ð34Þ

Thus, one obtains finally the enthalpy per particle [Eq. (35)]:

�
DHN0

ND

N0

�hex

¼ Hcore
0

�
1�2e

ffiffiffi
3
p
qþ 3ðg�2Þ
q2

�
�h0 ð35Þ

and the corresponding Boltzmann entropic contribution [Eq. (36)]:

�
DSN0

ND

kBN0

�hex

¼2 lnq�ðq�
ffiffiffi
3
p
Þ2 þ 3

q2
ln½ðq�

ffiffiffi
3
p
Þ2 þ 3�

� 2
ffiffiffi
3
p
q�12
q2

ln½2
ffiffiffi
3
p
q�12�� 6

q2
ln 6�s0

ð36Þ

Based on the above derivations for squared centered [Eqs. (26 and 27)]
or hexagonal [Eqs. (35 and 36)] arrays, one may readily evaluate the cor-
responding values qmin which minimize the standard Gibbs free energies
of each type of lattice. These are shown graphically in Figure 3 as a func-
tion of eHcore

0 /kBT for different values of g as was performed above for
simple squared arrays (compare Figure 2). It is again observed that for
arrays of sizes which are relevant to our purpose here, when qmin is not
much less than

ffiffiffiffiffiffi
N0

p
, its dependence on eHcore

0 /kBT becomes asymptotical-
ly independent of g. The corresponding asymptotic limits are readily
evaluated through the same procedure as that disclosed in detail in the
main text for simple squared arrays. This affords the counterparts of
Equation (17) for centered squared arrays of sufficiently large sizes (such
as qmin be comparable to

ffiffiffiffiffiffi
N0

p
) [Eq. (37)]:

qmin ¼ 2
ffiffiffi
2
p

exp
�
� eHcore

0

kBT

�
¼ 2

ffiffiffi
2
p

exp
�
�H

core
0 �Hedge

0

kBT

�
ð37Þ

or for hexagonal ones under the same conditions [Eq. (38)]:

qmin ¼ 2
ffiffiffi
3
p

exp
�
� eHcore

0

kBT

�
¼ 2

ffiffiffi
3
p

exp
�
�H

core
0 �Hedge

0

kBT

�
ð38Þ

Note that, as stated in the Introduction, the exact crystallographic nature
of the 2D supracrystal shows up only through small variations in the nu-
merical factors of the exponential terms: indeed, the factor 4 in Equa-
tion (17) is now replaced by 2

ffiffiffi
2
p
�2.8 or 2

ffiffiffi
3
p
�3.5 respectively for the

squared centered or the hexagonal cases. Equations (37 and 38) show
that the values of Nstable

D , which characterize the most stable number of
clusters when N0 particles are arranged onto the wafer in each case are

[compare with Equation (18)] [Eq. (39)]:

Nstable
D ¼ N0

8
exp
�
2
Hcore
0 �Hedge

0

kBT

�
ð39Þ

for a squared-centered configuration and [Eq. (40)]:

Nstable
D ¼ N0

12
exp
�
2
Hcore
0 �Hedge

0

kBT

�
ð40Þ

for a hexagonal one. It ensues that in order to obtain a single 2D supra-
crystal involving all the N0 nanoparticles onto the wafer (N

stable
D �1) the

following conditions must be fulfilled [Eq. (41)]:

ðHcore
0 �Hedge

0 Þcc � ðHcore
0 �Hedge

0 Þccmax ¼ �
kBT
2
ln
N0

8
ð41Þ

for a square centered array or [Eq. (42)]:

ðHcore
0 �Hedge

0 Þhex � ðHcore
0 �Hedge

0 Þhexmax ¼ �
kBT
2
ln
N0

12
ð42Þ

Figure 3. Variations of qmin as a function of eHcore
0 /kBT and g (solid curves;

from bottom to top: g =1,2,3,4 and 5) for a) centered square arrange-
ment, or b) for a hexagonal one. The dashed lines in (a, b) are the asymp-
totic solutions given in Equations (37 or 38), respectively.
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for a hexagonal one [compare with Equation (19)]. These conditions cor-
respond respectively to Equations (20 and 21) reported in the main text.
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